skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Koldemir, Aylin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Traditional synthetic efforts to prepare Eu(II)-containing oxides have principally involved the use of high temperature reactions starting from EuO or a controlled, highly-reducing, atmosphere. Conversely, chimie douce approaches that are more amenable to the targeted syntheses of new, and potentially metastable, Eu(II)-oxides have yet to be explored. Herein, a cation-exchange route to new Eu(II)-containing oxides, e.g., EuTa4-xO11 (x = 0.04), has been discovered and its structure determined by powder X-ray diffraction (Space group P6322 (#182), a = 6.2539(2) Å; c = 12.3417(2) Å). The compound derives from the cation exchange of Na2Ta4O11, via a reaction with EuBr2 at 1173 K, and replacement by half the number of divalent Eu cations. Rietveld refinements show preferential ordering of the Eu cations over one of the two possible cation sites, i.e., Wyckoff site 2d (~94%; Eu1) versus 2b (~6%; Eu2). Total energy calculations confirm an energetic preference of the Eu cation in the 2d site. Tantalum vacancies of ~1% occur within the layer of Eu cations and TaO6 octahedra, and ~20% partial oxidation of Eu(II) to Eu(III) cations from charge balance considerations. 151Eu M¨ossbauer spectroscopy measured at 78 K found a Eu(II):Eu(III) ratio of 69:31, with a relatively broad line width of the former signal of Γ = 7.6(2) mm s–1. Also, the temperature-dependent magnetic susceptibility could be fitted to a Curie Weiss expression, giving a μeff = 6.2 μB and θCW = 10 K and confirming a mixture of Eu(II)/Eu(III) cations. The optical bandgap of EuTa4-xO11 was found to be ~1.5 eV (indirect), significantly redshifted as compared to ~4.1 eV for Na2Ta4O11. Spin-polarized electronic structure calculations show that this redshift stems from the addition of Eu 4f7 states as a higher-energy valence band. Thus, these results demonstrate a new cation-exchange approach that represents a useful synthetic pathway to new Eu(II)-containing ox- ides for tunable magnetic and optical properties. 
    more » « less
  2. Abstract The removal of lead from commercialized perovskite‐oxide‐based piezoceramics has been a recent major topic in materials research owing to legislation in many countries. In this regard, Sn(II)‐perovskite oxides have garnered keen interest due to their predicted large spontaneous electric polarizations and isoelectronic nature for substitution of Pb(II) cations. However, they have not been considered synthesizable owing to their high metastability. Herein, the perovskite lead hafnate, i.e., PbHfO3in space groupPbam, is shown to react with SnClF at a low temperature of 300 °C, and resulting in the first complete Sn(II)‐for‐Pb(II) substitution, i.e. SnHfO3. During this topotactic transformation, a high purity and crystallinity is conserved withPbamsymmetry, as confirmed by X‐ray and electron diffraction, elemental analysis, and119Sn Mössbauer spectroscopy. In situ diffraction shows SnHfO3also possesses reversible phase transformations and is potentially polar between ≈130–200 °C. This so‐called ‘de‐leadification’ is thus shown to represent a highly useful strategy to fully remove lead from perovskite‐oxide‐based piezoceramics and opening the door to new explorations of polar and antipolar Sn(II)‐oxide materials. 
    more » « less